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1. MOTIVATION AND BACKGROUND

The Design-Oriented Analysis (D-OA) Paradigm
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Premise:

Not much of what you learned in school has turned

out to be much use

So why are you here, listening to another professor?

Because you are going to see a completely different

approach, from the get-go:

You don't solve equations simultaneously; instead:

You solve them sequentially

An Engineer's story
Falling off a cliff
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Most of us "fall off a cliff" when we begin our first job
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The Design Process

Design iteration loops
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The Design Process

Design iteration loops
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The design process consists of a succession of

iteration loops:
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"How to present the results” is important:

1. If you are a design engineer writing a report or

appearing before a design review committee;

2. If you are a Test, Reliability, or System Integration

Engineer dealing with someone else's design.

The D-OA approach is valuable for all these engineers.
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Realization:

Design is the Reverse of Analysis,
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Realization:

Design is the Reverse of Analysis,
because:

The Starting Point of the Design Problem
(the Specification)
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Realization:

Design is the Reverse of Analysis,
because:

The Starting Point of the Design Problem
(the Specification) is the

Answer to the Analysis Problem
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Conventional problem-solving approach:

1. Put everything into the model and simplify later.

2. Postpone approximation as long as possible, and don't even dare to
make an approximation unless you can justify it on the spot.

3. The "answer" is acceptable in whatever form it emerges from

the algebra.

4. The more work you do, the more valuable the result.

5. Every problem is a brand-new problem, and requires a brand-new

strategy to solve it.

This is a recipe for failure!
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Syndromes of Technical Disability:
Algebraic diarrhoea, which leads to
Algebraic paralysis

Fear of approximation
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Syndromes of Technical Disability:
Algebraic diarrhoea, which leads to
Algebraic paralysis

Fear of approximation

The negative results of the conventional paradigm are

often masked while the student is in school.
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Why does the conventional approach fail?

Mathematicians tell us:

# of equations must = # of unknowns

Engineers face:
# of equations < << # of unknowns

but have to solve the problem, anyway.
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How can we overcome the negative results of the

conventional approach?

1. Divide and Conquer:

It's easier to solve many simpler problems than

one large one.
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2. We must make the equations we do have work harder

by expressing them in "Low Entropy" form.

A High Entropy Expression is one in which the
arrangement of terms and element symbols
conveys no information other that obtained by

substitution of numbers.
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2. We must make the equations we do have work harder

by expressing them in "Low Entropy" form.

A High Entropy Expression is one in which the
arrangement of terms and element symbols
conveys no information other that obtained by

substitution of numbers.

A Low Entropy Expression is one in which the
terms and element symbols are ordered and
grouped so that their physical origin and relative
importance are apparent. Only in this way can
one change the values in an informed manner

in order to change the analysis answer (that is, to
make it meet the Specification).
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Low Entropy Expressions are essential in order to

navigate the Design Iteration Loop:
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Design-Oriented Analysis (D-OA) keeps the entropy low

at every step along the way to a low entropy result.
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Design-Oriented Analysis (D-OA) keeps the entropy low

at every step along the way to a low entropy result.

The way to do this is:

Avoid solving simultaneous equations.

Instead, follow the signal path from input to output
by Thevenin/Norton reduction and/or voltage/current

dividers.

There may be many such paths (algorithms), each of

which gives a different Low Entropy Expression.

Avoid multiplying out the series/parallel combinations.
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How can we overcome the negative results of the

conventional approach?
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How can we overcome the negative results of the

conventional approach?

3. Recognize that we don't want an exact answer:
it would be too complicated to use, even if we could

get it.
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How can we overcome the negative results of the

conventional approach?

3. Recognize that we don't want an exact answer:
it would be too complicated to use, even if we could
get it.

Therefore, subsititute for the missing equations

with: inequalities, approximations, assumptions,
and tradeoffs.
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D-OA problem-solving approach: D-OA Rules

1. Put only enough into the model to get the answer you need.

2. Make all the approximations you can, as soon as you can, justified
or not. Plow through the problem leaving behind you a wake of

assumptions and approximations. You can't lose by trying.

3. Figure out in advance as many of the quantities as you can that you
want to have in the answer, and put them into the statement of the

problem as soon as possible — even into the circuit model.

4. The less work you do, the more valuable the result. You control the
algebra. You make the algebra come out in low entropy form by

applying strategic mental energy before and during the math.

5. Every problem in not unique. There are problem solving strategies

that apply to almost all engineering problems.
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The benefits of applying the D-OA Rules are:

1. You can fend off algebraic paralysis.
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The benefits of applying the D-OA Rules are:

1. You can fend off algebraic paralysis.

2. Approximations are good things, not an admission
of defeat.
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The benefits of applying the D-OA Rules are:

1. You can fend off algebraic paralysis.

2. Approximations are good things, not an admission
of defeat.

3. Algebra is malleable; you have choices.
You are empowered to exercise control: the math is

your slave, not your master.

vo1d9-OA is the onlykindbodianalpsis worth doing! =9
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TOPIC
STRUCTURE
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Getting Results:

Low Entropy Expressions
Ch 2

Presenting Results

Ch3 Ch4 Ch5

Combining Results
Ché

Extending Results:

Input/Output Impedance Theorem I/OIT
Ch7
Null Double Injection NDI
Ch 8

Dissection Theorem DT
Cho9
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Chain Theorem Extra Element General Feedback
CT Theorem EET Theorem GFT

Cho9 Ch 8 Ch10 Ch11

Double Null Triple Injection DNTI
Ch 12 Ch 13

2CT 2EET 2GFT
Ch 12 Ch 13

NNull, N+1 Injection NN, (N+1)I

g

Ch 12
NCT NEET NGFT
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2. LOW ENTROPY EXPRESSIONS

The Key to D-OA
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Conventional analysis
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.o 1S 1s a high entropy expression
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Apply mental energy to:
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Reflection of impedances
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Thevenin/Norton
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Don't leave out the penultimate line, because

this is where the relative importance of the

o Vaxious element gontribmtionsds.exposed!

2. Low Entropy Expressions
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BOTTOM LINE:

AVOID solving simultaneous equations.

Instead, follow the signal path from input to output
by Thevenin/Norton reduction, voltage/current

dividers, and reflection of impedances.

This automatically generates Low Entropy Expressions;

AVOID multiplying out the series/parallel expressions.

There may be many such paths (algorithms), each of

which gives a different Low Entropy Expression.
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3. NORMAL AND INVERTED POLES AND ZEROS

How to choose the gain at any frequency as the Reference Gain
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This format is commonly considered to be "the answer."

However, it is much better to extract the constant term from

both the numerator and denominator polynomials in s:
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This normalizes the polynomials, and exposes a

zero-frequency gain and a corner frequency.
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This is a special case of the general result as a ratio of
polynomials in complex frequency s:

bg + bys+bys? + bgs® +...

d( +aqS+ 3252 + a353 + ...

A =

Extraction of the constant term from numerator and
denominator defines the zero-frequency reference

gain A,.¢ and normalizes the polynomials:

b b b
1+bls+bzs2 +b3s3 ¥ ...
0 0 0
A=A ¢
T14fg 222,853,
ag ag ag
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Factorization of the polynomials defines the poles and
zeros, and hence the final (preferred) "factored

pole-zero" form:

The reference gain and the poles and zeros should,
of course, be low entropy expressions in terms of the

circuit elements.
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Return to the example:
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Exercise 3.1
Write factored pole-zero forms from asymptotes
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Exercise 3.1 - Solution
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Exercise 3.2

Write factored pole-zero forms for different Reference Gains,
and write A, and A3 in terms of A;
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Exercise 3.2 - Solution
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Exercise 3.2 - Solution
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If you don't use inverted poles and zeros, you are stuck

with the zero-frequency gain as the reference gain.

The principal benefit of using inverted poles and zeros
is that you can choose the gain at any frequency as the

reference gain.
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Exercise 3.3
Write input and output impedances Z; and Z, in factored pole-zero forms.
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Exercise 3.3 - Solution
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4. AN IMPROVED FORMULA FOR QUADRATIC ROOTS

The Conventional Formula suffers from two congenital defects
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You can't lose by trying!
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A= RL 1+SC1R2
R1+R| 1+S[C1(R2+(R1HRL)]+52[C1C2R2(R1HRL)]
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These are congenital defects!
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Remember this graph!
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One more time!

Bad!

Good!
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One more time!

Bad!

Further information:
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Return to the circuit example:
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A still better solution:

Apply the mental frequency sweep

v.0.1 3/07 http://www.RDMiddlebrook.com
4. Improved Quadratic Roots

40



v.0.1 3/07

http://www.RDMiddlebrook.com
4. Improved Quadratic Roots

41



v.0.1 3/07

http://www.RDMiddlebrook.com
4. Improved Quadratic Roots

42



v.0.1 3/07

http://www.RDMiddlebrook.com
4. Improved Quadratic Roots

43



v.0.1 3/07

http://www.RDMiddlebrook.com
4. Improved Quadratic Roots

44



v.0.1 3/07

http://www.RDMiddlebrook.com
4. Improved Quadratic Roots

45



v.0.1 3/07

http://www.RDMiddlebrook.com
4. Improved Quadratic Roots

46



v.0.1 3/07

http://www.RDMiddlebrook.com
4. Improved Quadratic Roots

a7



5. APPROXIMATIONS AND ASSUMPTIONS

How to build Low Entropy Expressions with minimum work
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An even better choice is

1
Wi _ 102€

Wo
because for Q = 0.5 (two equal real roots)

i -10
Wo
and the slope is —90°/dec, the same as twice the

—45°/dec slope for a single pole.
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Put the quantities you know you want in the answer into
the statement of the problem as soon as possible, even

into the circuit diagr
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Exercise 5.1
Sketch asymptotes for Z; and Z, for low Q.
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Exercise 5.1 - Solution
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Since there are now two resistances, re-name

: R
By analogy, define Qp = &
RO
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Why is Qp defined "upside down" relative to Q, ?
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Conventional result:
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Conventional result:

Reveals no insight

This high entropy result can be converted into the desired
low entropy version by application of mental energy, but it

takes quite an effort, and you have to know where you're

going!
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Conventional result:
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e 1 1
1+1/QCQL i + i

1+ Qe 0)3 S + S 2
J1+1/Q01 | wo+/1+1/Q.Qr. Wo+/1+1/Q.Qr

This is a good example of how a low entropy format can
allow one equation to disclose more than one useful
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1

H=
1+1/ QeQL

second
order ™

second
order

first
order >

v.0.1 3/07

1 1

7+7
1+ Qe QL S +
J1+1/Q01 | wo+/1+1/Q.Qr.
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Compare the Z; asymptotes with and without R; :

Without RL:
(QL = 00)

With RL:
(Qp # )
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The appearance of the new corner frequency ©,/Qg

can be confirmed by a mental frequency sweep:

Without Ry, Z; — «© as w — 0 because of the capacitive

reactance.

With Ry, Z; flattens, so a concave downwards corner is

introduced, which is an inverted pole.
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When an LC filter is loaded, a 4th effect needs to be

accounted for:

second
order ™
second
order >
first
order

first =» 4. New corner frequencies may appear in
order some transfer functions
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A third damping resistance R, may be present,

representing the capacitor esr:

By analogy with Q,, define Q. = II:O

C

The analysis for H, Z;, and Z, could be re-done in the
same way.

Instead, let's build the result by applying what we
already know about the two simpler cases.

The price we are willing to pay, in order to leap-frog

directly to the result, is that the second-order effects

VO LYe7 . http://www.RDMiddlebrook.com 66
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A third damping resistance R, may be present,

representing the capacitor esr:

One first-order effect of adding a second damping
resistance was to lower the total Q; to the parallel

combination
1 1 1

= +
Qt Qe QL
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A third damping resistance R, may be present,

representing the capacitor esr:

A good guess would be that adding a third damping
resistance would lower the total Q; to the triple parallel

combination
1 1 1 1

= + +
Qt Qe QL QC
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Another possible first-order effect of adding a third
damping resistance is the appearance of additional

corner frequencies.

A mental frequency sweep can be used to verify an
analytical result, but it can also be used "in reverse"

to expose new corner frequencies.

The strategy is to determine whether or not the addition
of the third damping resistance changes the asymptote

slope as frequency approaches either zero or infinity.
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For the voltage transfer function H:

w — 0: no change of slope, so no new inverted

pole or zero;

w — : a concave upwards corner appears, so there

1S a new normal zero.

Further, the value of the corner is where 1/wC =R,
which is 1/RC=Q .w,,.
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Assembled results:
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Assembled results:

triple parallel
combination:

A similar process leads to the assembled result for Z;:

(No new cornetrs)
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6. PRODUCTS AND SUMS OF FACTORED POLE-ZERO
EXPRESSIONS

Doing the Algebra on the Graph
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Functions expressed in factored pole-zero form often need

to be combined, either by multiplication or addition.

Multiplication is straightforward:

° | Aq | | Ay ——o A=A14y

AR S o
Op11 op12 ) op21 w22 |

R S e A
@p11 ®p12 ®p21 @p22

The prosjuct contains the polgs and geres b both functions. 2
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Addition is more complicated:

|A2|

o C)—o A=A1+ A,

A Alref (1+a)2811 )(1+w2812 )

(1+ w;ﬂ )(1+ wzszz )
+ Appef
(1+w3 )(H S ) (1+5)(1+ s )
p1l Dp12

@p21 @wp22 )

A=A1ref(1+wn)(1+wzu) '(H“’I:ZJ(H“’PZZ) +A2ref(1+5)(1+w222) (H ; )(H : j

®z21 ®p11 @p22 |

(1+ S )(1+ S )...(1+ S )(H S )
®p11 0p22 ®p21 ®p22

v.0.2 10/07 http://www.RDMiddlebrook.com
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Addition is more complicated:

|A2|

o C)—o A=A1+ A,

S S S S S
Alref(1+ 011 )(1+ 012 )...(1+ op21 j(1+wp2 j +A2,ef(1+ 0201 )(1+ 029 )...(1+ op11 )(1+ op2 )

A=

( S )(1+ S )...(1+ S )(1+ S j
®p11 ®p22 @p21 ®p22

The sum contains the poles of both functions, but the
numerator consists of the sums of cross-products of poles
and zeros, and is a new polynomial that has to be

renormalized and refactored.

v.0.2 10/07 http://www.RDMiddlebrook.com 9
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This can be very tedious, and requires approximations

if the numerator is higher than a quadratic in s.

"Doing the algebra on the graph" makes suitable

approximations obvious.
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A guess is that the sum follows the larger:

A =1
odb _—01I
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A guess is that the sum follows the larger:

A =1
odb _—01I
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A guess is that the sum follows the larger:

This is confirmed algebraically:

A=A{+Ay=1+%0
S
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If the sum follows the larger, the result is:

0db ——
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If the sum follows the larger, the result is:

0db

However, the algebra shows that this is an approximation:

1 1+A20+a§1

A=1+ A20 1 p = 1 p
+ + ——
| |
1+ S
_ (1+Agg)an
= (1 + Azo) 5
|
v.0.2 10/07 http://www.RDMiddlebrook.com 17
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This is the exact answer.
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This is the exact answer.

It's your decision as to whether the approximate answer

is good enough.

v.0.2 10/07 http://www.RDMiddlebrook.com 19
6. Products & Sums



Exercise 6.1
Guess an exact sum

Guess the exact sum A = A;+A, on the graph, then find it

algebraically.
Ay =1
0db
@o
Ay
Wy
v.0.2 10/07 http://www.RDMiddlebrook.com
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Exercise 6.1 - Solution

Guess the exact sum A = A;+A, on the graph, then find it

algebraically.
Ay =1
0db ——
v.0.2 10/07 http://www.RDMiddlebrook.com
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Exercise 6.1 - Solution

0db
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Guidelines:

In ranges where both functions have the same slope, the
combination has the same slope and is the sum of the

separate values.

The poles of the sum are the poles of the two functions.

The "gain-bandwidth tradeoff" relates the corner

frequencies to the flat values.
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Exercise 6.2
Find an exact sum graphically

Use the Guidelines to construct the exact sum of the two functions,

without doing any algebra:

A =1
odb !
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Exercise 6.2 - Solution

Agg = @, [ an
A =1
0db —
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Exercise 6.2 - Solution
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Exercise 6.2 - Solution

Agg = @, [ an
A1 =1 o1
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Exercise 6.2 - Solution
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Difference of two functions:
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Difference of two functions:

Ao oy
A Aq
20 P (P s 1
Az 1= 410
0° +a)1
—45° /dec
—9(° \
v.0-21807 http://www.RDMiddlebrook.com 30
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Difference of two functions:

01
A1
Ag = A10 — AN
A
20 Al = AlO
o 1+ S
0 o
—45°/dec
—-90°
v.021807 http://www.RDMiddlebrook.com 31
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Difference of two functions:

w1
Aqg
Aqg — Apg
Ag = Aq9 — Apg an = (14 an
20
A Aq
20 Wo = A S <! 1
20~ A1 =A19
0° 1+ a
—45° /dec
—-90°
v.021807 http://www.RDMidd
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Difference of two functions:

OO

—45° /dec

—-90°

v.021807 http://www.RDMI
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Difference of two functions:

The result is

The corner @, is a right half plane (rhp) zero:
it has a concave upward magnitude response,

but a phase lag, not a phase lead.
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Difference of two functions:

OO

—45° /dec

—-90°

v.021807 http://www.RDMI
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Difference of two functions:

A rhp zero occurs when a signal can go from input to
output by two paths, one inverting and one not, with
one path dominating at low frequencies, and the other

dominating at high frequencies.

Every common-emitter or common-source amplifier

stage potentially exhibits a rhp zero.
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Consider sums of functions that result in quadratics in s

%o
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Consider sums of functions that result in quadratics in s

The numerator is a quadratic pair of zeros with infinite Q
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Consider sums of functions that result in quadratics in s

In any realistic case, there will be at least one additional

corner:
RO
S o, Q @
@, S S
o, R
Q -
v.0.2 10/07 http://www.RDMiddlebrook.com 39
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Consider sums of functions that result in quadratics in s

In any realistic case, there will be at least one additional

corner:
S @9
Z1 =Ry — =R, —
@, s
2
1+ 1(5) + (S)
|: Q\ o, @ w, 1 s
Z = RO = RO — 4+ — 4 —
S S Q )
@, 0
The second version exposes the symmetry.
v.0.2 10/07 http://www.RDMiddlebrook.com 40
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Consider sums of functions that result in quadratics in s

In any realistic case, there will be at least one additional

corner:

%o

Conclusion: The Q of a quadratic corner is affected by a

0131;8407 http://www.RDMiddlebrook.com 41
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Short cut to find the quadratic Q-factor:

Evaluate Z; and Z, separately at s = jw, :

S @, /
leRow—(l'*' OS Q) Z1(jw0)=Roj(1+j1Q]=Ro(1+j]
(0]

Q
: 1 :
ZZZRO% ZZ(]wo):Ro} :Ro( _])

When the two are added, the
imaginary parts cancel, and
the real part is the sum of the

. R,
separate real parts: Z(ja,) = )
v.0.2 10/07 http://www.RDMiddlebrook.com
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In the above example, Z1 and Z, are the series and
parallel branches of the single-damped LC low-pass

filter, and Z is the input impedance Z; :

Zq Z,
V4 N 4 AN
R s ] ° o=+ g _|L
4 oo Mo, | " NIe Tete
R, % QE&
o s T o R

RO
S @, / @
@y S S
v.0.2 10/07 Q http://www.RDMiddlebrook.com 43
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Doing the algebra on the graph can be extended to the
double- and triple-damped filters.
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Exercise 6.3
Find Z; for the double-damped LC filter. Draw the asymptotes for Z,

and Z,. Construct the asymptotes for the input impedance Z,;=7+Z7,,
and find the Q; of the quadratic in s. Neglect second-order effects.

4 Z,
/7 N\ 7/ \
B A—— © a= g Ry=
S ——— = -
Z; > R,— 2 o JLC o=
» e @ Qc
R, % Q _Re Q _Ro
o s | o ° R, “ R,
v.0.2 10/07 http://www.RDMiddlebrook.com 45
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Exercise 6.3 - Solution
Find Z; for the double-damped LC filter. Draw the asymptotes for Z,

and Z,. Construct the asymptotes for the input impedance Z,;=7+Z7,,
and find the Q; of the quadratic in s. Neglect second-order effects.

4 Z,
/7 N\ /7 \
B A—— " ae= g Ry=
R s Ry o= 1n ==
Z*l e Ko Wo Qc% LC ’ ¢
R, % Q, = Ro Q. = R,
® s | o ° R, “ R,
RO
Do s Q.0, Z2 =R, 0(1+ J
,Jz)o €0 S Q. m,
Q. o
v.0.2 10/07 e http://www.RDMiddlebrook.com 46
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Exercise 6.3 - Solution
Find Z; for the double-damped LC filter. Draw the asymptotes for Z,

and Z,. Construct the asymptotes for the input impedance Z,;=7+Z7,,
and find the Q; of the quadratic in s. Neglect second-order effects.

4 Z,
/7 N\ /7 \
R s R ° @, = L R L
. Ko i Ko 0 = — = _
Z*l e Ko Wo Qc% LC ’ ¢
R, %0 Q _K Q _K
® s | o ° R, “ R,
Do s Q.0, Z2 =R, 0(1+ J
A?)o o S Qc @0
Q. o
v.0.2 10/07 e http://www.RDMiddlebrook.com 47
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Exercise 6.3 - Solution
To find the quadratic Q-factor, evaluate Z; and Z, separately at s = jo, :

1 1
Z1(jo,)=R,7| 1+ - =R (+j
1] @ 0]( ]Qe] 0 J

Z>(jo,) =R, (—])(1+]QLJ =R, [i—]J

Hence Z;(jow,) = Z1(jw,)+ Z5(jw,) = RO(QI +Q1 J
e C
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Exercise 6.3 - Solution
Find Z; for the double-damped LC filter. Draw the asymptotes for Z,

and Z,. Construct the asymptotes for the input impedance Z,;=7+Z7,,
and find the Q; of the quadratic in s. Neglect second-order effects.

Z1 Z;
7 IWY\\ /‘ N o 1 L
R, s R, WDy = —F7— R.=|=
Z; Q. Ro - Q. JLC 0 C
> &, 0,=Fo g Ko
® s | o ° R, “ R,

Z, =R, s(1+
@o

v.0.2 10/07 Qe http://www.RDMiddlebrook.com 49
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Exercise 6.4
Find Z; for the triple-damped LC filter. Draw the asymptotes for Z

and Z,. Construct the asymptotes for the input impedance Z;=72,+7Z,,
and find the Q; of the quadratic in s. Neglect second-order effects.

4 Z,
/7 \ 7/ \

R R ° D, = ! R L

S = = —

Z;, A R o Q—o o JLC 0 C

' e >
OR w‘c’ QLRO; Ro Ro RL
o = — = — = —
v.0.2 10/07 http://www.RDMiddlebrook.com 50
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Exercise 6.4 - Solution
Find Z; for the triple-damped LC filter. Draw the asymptotes for Z

and Z,. Construct the asymptotes for the input impedance Z;=72,+Z,,
and find the Q; of the quadratic in s. Neglect second-order effects.

Z4 Z,
7 N/ N
R M;ﬂ R ° = —,1— R, = L
* OR a)_‘c) QLRO; Q RO Q RO Q RL
(0] - — = — =

R
Z;(0)=Z1(0)+ Z5(0) = @h RoQr ~ R,Qr

e

With neglect of the second-order effects, Z; follows the higher asymptote:
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Exercise 6.4 - Solution
Find Z; for the triple-damped LC filter. Draw the asymptotes for Z

and Z,. Construct the asymptotes for the input impedance Z;=72,+Z,,
and find the Q; of the quadratic in s. Neglect second-order effects.

— Ro _ Ry
=20 Q=1L
(o) (0
S S
Z1=KR, (1 + 2 1+ Q.o
) =R
= 0 s w, 1 Qr,
1+
v.0.2 10/07 Qe http://www.RDMiddlebrook.com 52
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Exercise 6.4 - Solution
To find the quadratic Q-factor, evaluate Z; and Z, separately at s = jo, :

1 1
Z1(Gjw,)=R,j| 1+ - = ( +']
1@ o]( ]QeJ 0 Q. J
| 1+ — j+Q1) 1+ le
Zy(joo) = R, (~7) _]QC =Ro( 1:_( L)
Qr QLLZ
1 1 zé 1 1
~ R + — 1| 1- ~ R + _]J
O{Qc Qr ]( Q Lﬂ O[Qc Qr
1 1 1
Hence Z; (jw,) = Z1(jw,) + Z» (ja,) =R, Qe+Qc+QL
v.0.2 10/07 http://www.RDMiddlebrook.com 53
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Exercise 6.4 - Solution
Find Z; for the triple-damped LC filter. Draw the asymptotes for Z

and Z,. Construct the asymptotes for the input impedance Z;=72,+Z,,
and find the Q; of the quadratic in s. Neglect second-order effects.

Zq Zy
7/ N/ N
21 _Z R, w_ Q_O | 0 vLC 0 — C
=) OR wg QrR3 R, R, Ry
T Q=20 Q=20 Qu=_F
g © e c 0

Q Q Q U
S S
Zl - RO R P AP WAL U5 bbbl Z _ R a)o 1 + cho
@o 2 =Ry /
- 4 Q., S 14 %/QL
“o Ro / QL S
Q "
v.0.2 10/07 e http://www.RDMiddlebrook.com 54
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Exercise 6.5
Construct A = A; + A, in both magnitude and phase asymptotes,

starting from A; and A, in suitable factored pole-zero forms.

0db

v.0.2 10/07 http://www.RDMiddlebrook.com
6. Products & Sums

55



Exercise 6.5 - Solution
Construct A = A; + A, in both magnitude and phase asymptotes,

starting from A; and A, in suitable factored pole-zero forms.

0db

v.0.2 10/07 http://www.RDMiddlebrook.com
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Exercise 6.5 - Solution

With neglect of second-order effects, the sum will follow the

higher function:

0db

The form is:
2
A= a)o(l_*_a)O/Q)l:l_*_l(sj_*_(sJ jl
S S Qt \ @ Do

v.0.2 10/07 http://www.RDMiddlebrook.com
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Exercise 6.5 - Solution
Find the quadratic Q-factor Q; :

A:s+&(1+M)

®, S s

1 1 1 1
A.. :. — 1 — :.—‘1— .— —_—
(o) ”i[ +J’Q] J ’( ]QJ Q

So Q; =—Q and the final form is

SRS [SEL A3

v.0.2 10/07 http://www.RDMiddlebrook.com
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Exercise 6.5 - Solution

0db

25

The negative Q; means that the quadratic is two rhp zeros, so the
magnitude asymptotes have a concave upwards corner at @,, and the

phase is a 180° lag, not a lead.
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Exercise 6.5 - Solution

0db
Aq =
I
—-90° ~
+45°/dec
—180°

v.O.g_=1i%%=

60



Exercise 6.5 - Solution

0db

-90°

+45°/dec

—180° 1

v.0.



Exercise 6.5 - Solution

v.0.

0db

-90°

+45°/dec

62



Exercise 6.5 - Solution
By doing the algebra on the graph to set up

=g o)

you have effectively found the symbolic roots of a

cubic equation!

Algebraically,
A=s+“’0(1+w"/QJ

®, S
2

J(%) L@, S

Q\ s

which is a cubic in (s/@,).

v.0.2 10/07 http://www.RDMiddlebrook.com
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Extensions of the graphical method
1. In the sum of two functions, any one can be extracted

to reduce the sum to the form 1+ T:

Z=Zl +Zz =Zl[1+éj etc.
Zq

v.0.2 10/07 http://www.RDMiddlebrook.com
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Extensions of the graphical method
1. In the sum of two functions, any one can be extracted

to reduce the sum to the form 1+ T:

Z=Zl +Zz =Zl[1+éj etc.
Zq

2. The sum of any number of impedances in series can

be found graphically:
ZzZl +Zz+Z3 + ...

The result follows whichever contribution is the largest.

v.0.2 10/07 http://www.RDMiddlebrook.com
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Extensions of the graphical method
1. In the sum of two functions, any one can be extracted

to reduce the sum to the form 1+ T:

Z=Zl +Zz =Zl[1+éj etc.
Zq

2. The sum of any number of impedances in series can

be found graphically:
ZzZl +Zz+Z3 + ...

The result follows whichever contribution is the largest.

3. Similarly, the sum of any number of impedances in

parallel can be found graphically:

1 1 1 1
=t +...
Z Z, Z, Z,

The sesplt follows whicheyer contsihmtionis he smallest.

6. Products & Sums
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For the triple-damped LC filter, draw the asymptotes for Z; and Z,.

Construct the asymptotes for the output impedance Z,=Z1|Z,,
and find the Q; of the quadratic in s. Neglect second-order effects.

Z Z,
7/ N/ \
R s R °
S
Zi -2 Roa)_ Q_O X ZO
= ° > Rz €
R,—2 Q
o > T © ¢
Zi = Zl + ZZ
1 1 1
= +
Zo Zl ZZ
v.0.2 10/07 http://www.RDMiddlebrook.com
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Q
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For the triple-damped LC filter, draw the asymptotes for Z; and Z,.

Construct the asymptotes for the output impedance Z,=Z1|Z,,
and find the Q; of the quadratic in s. Neglect second-order effects.

Zq Z
v - N /‘ N o
R R
Zi o R, o - Z,
* e 0 wc Qr Rog *
R _OT Qe
o S . ©

v.0.2 10/07

Qe http://www.RDM@dlebrook.com
6. Products & Sums

Ry
RO




For the triple-damped LC filter, draw the asymptotes for Z; and Z,.

Construct the asymptotes for the output impedance Z,=Z1|Z,,
and find the Q; of the quadratic in s. Neglect second-order effects.

Zq Z
v - N /‘ N o
R R
Zi o R, o - Z,
* e 0 wc Qr Rog *
R _OT Qe
o S . ©

v.0.2 10/07

Qe http://www.RDM@dlebrook.com
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"Doing the algebra on the graph" applies to any transfer
functions, whether they be voltage gains, current gains,

impedances, or admittances.
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"Doing the algebra on the graph" applies to any transfer
functions, whether they be voltage gains, current gains,

impedances, or admittances.

In particular, the last example of impedances in parallel
also applies to reciprocal sums of voltage gains or current
gains, which will be valuable in the later applications of

the Dissection Theorem.
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7. THE /O IT:
The Input/Output Impedance Theorem

How to find them directly from the Gain, thereby saving
almost two-thirds of the work

v.0.1 3/07 http://www.RDMiddlebrook.com
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Why do we need to deal with input and

output impedances?
1. They may be part of the specifications.

2. They describe the interaction between two system blocks, and are
therefore components of the Divide and Conquer approach,
specifically incorporated in the Chain Theorem.

Definitions of "input" and "output:"

Input and output impedances are transfer functions (TFs), just as

is the gain.

A TF is a ratio of one signal in a circuit to another, so the most general
definition of "input" and "output" is that the "input" is the signal in the

denominator, and the "output" is the signal in the numerator:

"output”

- — = transfer function TF
v.0.1 3/071nPUt http://mww.RDMiddlebrook.com 2
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If numerator and denominator are both voltages or currents, the TF is
a voltage gain or a current gain; if the numerator is a voltage and the
denominator is a current, the TF is a transimpedance (and vice versa for

a transadmittance).

If the numerator is the voltage across the same port into which the

denominator current flows, the TF is a self-impedance.

The denominator of a TF is not necessarily an independent excitation; the

independent excitation may be elsewhere.

Thus, there are three kinds of "input":
1. A signal at a port designated as "input"

2. An independent excitation

3. The denominator of a TF

v.0.1 3/07 http://www.RDMiddlebrook.com 3
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Driving Point Impedance

The port at which a circuit is driven is the driving point.

One of the many TFs of interest is the driving point impedance, which is

the self-impedance "seen" at the driving point:

driving

point

A system usually has designated signal "input" and "output" ports:

v.0.1 3/07 http://www.RDMiddlebrook.com 4
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Input Impedance

Zg4y =~ =Z; = input impedance

at the signal input port

Note: the "input" signal for the input impedance TF is i;, although the
input signal for the gain TF may be v; or i;, depending upon the

defPrition of the gain_ http://www.RDMiddlebrook.com
7. The l/OIT



Output Impedance

Zgy =~ =Z, = output impedance

at the signal output port

v.0.1 3/07 http://www.RDMiddlebrook.com 6
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Conventional Approach

Calculate the gain H
Calculate the output impedance Z,,

Calculate the input impedance Z;

Usually these are done separately, each starting from scratch, and they may

be equally lengthy analyses (especially if there is feedback present).

However, much of the analysis is the same in each case, so there is

motivation to find a short cut that avoids the repetitions.

v.0.1 3/07 http://www.RDMiddlebrook.com 7
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Consider the simple voltage divider:

O 1 OO0y = Hei
é; Zl
1 + — Z e
o 7 2 2
O O

The three analyses lead to:

Z,

H=_°2
Zl +Zz

Z;=721+2, Z,=271\2,

The "hard part" in each case is calculation of Z; + Z,.

However, Z; and Z, can be written in terms of H :
Z;

zi="2 Z,=27:H

Thus, the sum Z; + Z, need be calculated only once to find H, and then

Z; and Z ,can be found as products or quotients of H.

v.0.1 3/07 http://www.RDMiddlebrook.com 8
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This trick doesn't work for more complex circuits, but there is still
motivation to find a way to calculate Z; and Z, from H instead of

starting from scratch.

v.0.1 3/07 http://www.RDMiddlebrook.com
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Inner and Outer Input and Output Impedances

Forward voltage gain A, = ‘L

There are two kinds of input and output impedances, depending on
whether the system is defined to include the source and load

impedances or not.

outer input impedance = Z; outer output impedance =7,

* *
inner input impedance =Z; inner output impedance =Z,
v.0.1 3/07 http://www.RDMiddlebrook.com 10
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Output Impedance Theorem

Forward voltage gain A, = ‘L

iL UL Av

Forward transadmittance gain Y} = = =
es Zres Zp

. : A
Short-circuit forward transadmittance gain Ytsc =0

Zy

ZL—)O

v.0.1 3/07 http://www.RDMiddlebrook.com
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Output Impedance Theorem

: v
Forward voltage gain A, = =
€s
O
€g ZO
<+> -> Ayes
Z;
O
oc output voltage Age
Z, P 5 for the same eg =09
sc output current Y eg
;v _ fwd voltage gain
0 Ytsc sc fwd transadmittance
A
Z, = Av This is the Output Impedance Theorem
Ao
v.0.1 3/07 Zr Z; -0 http://www.RDMiddlebrook.com 12
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Input Impedance Theorem

Convert the Thevenin independent source eg,Zg to a Norton equivalent:

Forward transimpedance gain

0 (Y
zZ, =-L-_"L
5 JS|zgser

v.0.1 3/07 http://www.RDMiddlebrook.com 13
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Input Impedance Theorem

Forward transimpedance gain

oL oL oL
5 51Z¢—w 7o
5 ZS —>» 00
v.0.1 3/07 http://www.RDMiddlebrook.com 14
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Input Impedance Theorem

Forward voltage gain A, = ‘L

Forward transimpedance gain

_9L _ 71 _ L L
Ly =——=" = = :ZSAU‘Z 0
is  js| €s oL/ Ay s
Zg—o 7 7
v.0.1 3/07 http://www.RDMiddlebrook.com 15
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Input Impedance Theorem

Forward voltage gain A, = ‘L

_ input voltage

Z; = input current for the same vy, = VZ
7. _ Zy _ fwd transimpedance t
A, fwd voltage gain
ZgA
i= ° jzs 2% Thisis the Input Impedance Theorem
v.0.1 3/07 ¢ http://www.RDMiddlebrook.com
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Inner and Outer Input and Output Impedances

01 = Aves
O
es
® <=
ZO
O

The value of the formulas is that once the gain is known, only a simple
limit with respect to either Z; or Zg need be calculated to find the outer

output or input impedances Z, or Z;.

v.0.1 3/07 http://www.RDMiddlebrook.com 17
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Inner Input and Output Impedances

It is obvious that

Z * _ Z _ ATJ . Av ZL—)OO
=2y =
ZL ZL—)O ZL—)OO ZL ZL—)O
7 * ‘ B ZSAU‘ZS_,OO 3 ZSAU‘ZS_)OO
i T 2Zg—>0 " B
v.0.1 3/07 ﬁ%ﬁ://www.&DM_ip@lebrooé@b‘ﬂs —0 18
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Inner Input and Output Impedances

Thus, all four input and output impedances can be found

by taking simple limits upon the gain A,,.

v.0.1 3/07 http://www.RDMiddlebrook.com 19
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This has been treated already. The result for the gain A is:

v Ry vy = Avq 1+ 5
MN ! 1 —° A=Ay )
S S
7k g o . (1 )(+2)
0.1uF 100k A= RL _ 1
C "R +R " C1(Ry + Rq|R
2 == 1+ R, C1(Ry +Rq|Ryp)
Z; Ry < 0.002uF
1
l l C1R; Ca(Rq|Ry|Ry)
1\ ©
The formula for the outer input impedance is
i~ A
Since Rq is a surrogate Zg,
A
v.0.1 3/07 http://www.RDMiddlebrook.com 20
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NN—1 I — A=Ay ==
s s
vk L R (1+a) 1+ )
0.1uF 100k A= RL _ 1
C 0= =
2 — § R1+RL Cl(R2+R1HRL)
Z; R, % 0.002 F
1k 1 1
Dy = ——— WH =
P l L o © C1Ry C>(R1|Rz|Ry)
The limit can be taken factor by factor:
1+ S) s s
RIA‘RI_)OO RlAO‘Rl—)oo ( @r R{—x (1 + o)) 1+ [0))
Zi —_ —_
A Ag (1+af) (1+5) (1+S)
z | Rl —>»00 2 Rl —>»00
v.0.1 3/07 http://www.RDMiddlebrook.com 21
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ANN— - — A=Ay =
S 5
47k 0 Rp (1+w1)(1+wz)
0.1uF 100k A= Ri _ 1
C2 e § 0 R1+RL Cl (R2+R1HRL)
Z; Ry < 0.002uF
1k . = 1 o = 1
= - ) =
g : — T GR C2(R1|Rz|Ry)
The limit can be taken factor by factor:
1+ S) s s
7. = RIA‘Rl—)OO . RlAO‘Rl—)OO ( e Rl—)OO (1+(01) (1+w2
;= —
A Ag (1+af) (1+5) (1+S)
z ®1/IR; >0 @2 JIR; >0

A huge simplification emerges: any factor in A that does not contain Ry
is unaffected by the limit and therefore cancels.

v.0.1 3/07 http://www.RDMiddlebrook.com 22
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NN—1 - — A=Ay
ko R, (1+5)(1+ )
0.1uF 100k A= Ri _ 1
C2 e § 0 Rl +RL Cl (Rz +R1HRL)
Z; Ry < 0.002uF
1k . = 1 o = 1
-~ 5 =
g : — T GR C2(R1|Rz|Ry)

The limit can be taken factor by factor:
1+ 5 s s
B RlA‘Rl—)oo B RlAO‘Rl—mo (/A;—)oo (1 + (01) (1 + a)z)

Z; = =
A Ag 1 (1+ ) (1+S)
Rl—)OO @2

s
a)1
A huge simplification emerges: any factor in A that does not contain Ry

Rl —>»00

is unaffected by the limit and therefore cancels.

v.0.1 3/07 http://www.RDMiddlebrook.com 23
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NN—1 I — A=Ay ==
S 5
vk o L R (1+a) 1+ )
0.1uF 100k Ag=— KL _ 1
C2 e § Rl +RL Cl (Rz +R1HRL)
Z; R, % 0.002 F
1k 1 1
Dy = ——— WH =
g : — T GR C2(R1|Rz|Ry)
The limit can be taken factor by factor:
s S
Rl . Ry, (1+5)  (1+2)
;= =
A Ag (1 + S) (1 + 5)
®1/IR; >0 2/IRy >
v.0.1 3/07 http://www.RDMiddlebrook.com 24
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ANW—1 t —o A=A G
S S
47k 0 Rp (1+w1)(1+wz)
0.1uF 100k Ag=— KL _ 1
C2 e § R1+RL Cl (R2+R1HRL)
Z; Ry < 0.002uF
1k . = 1 o = 1
= ) =
g : — T GR C2(R1|Rz|Ry)
The limit can be taken factor by factor:
s s
Rl . Ry, (1+5)  (1+2)
;= -
A Ag (1 + S) (1 + 5)
1/ IRy >0 P2 )Ry >0

You can take advantage of this knowledge in advance, by highlighting R4

in the parameter definitions and omitting these factors when substituting

into the formula.
v.0.1 3/07
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Rewrite the definitions highlighting R :
v1 R vy = Avq 1+-5-
—AA— : — A=Ay r -
S S
7K Ry (1+5)(+)
0.1uF 100k
H c

Aqn = =
T § " Ry+R, ' Ca(Ry+Ry[Rp)
Z; R, % 0.002 F

1k

a)z ‘Rl —00 =

v.0.1 3/07 2 (Rl H Ry H RhlttZ‘R/ywﬁpRDMlddlgbggk (‘:‘olr{n )
7.The /O 1T
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Exercise 7.1
Find the outer output impedance Z,

11 Ry Uy = Atq 1+ wi
M 1 T T © A=A . £ s
7k oo R, (15 )(1+,)
0.1uF 100k A= Ri _ 1
C2 e § <+ 0 R1+RL Cl (R2+R1HRL)
R, 0.002uF Z,
1k 1 1
Wy = ——— D =
P l L o C1R; Ca(Rq|Ry|Ry)
v.0.1 3/07 http://www.RDMiddlebrook.com 27
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Exercise 7.1 - Solution

Rewrite the definitions highlighting Ry :

1 Ry vy = Avq 1+ 5
MWV t ' —o A=A ; 2 ;
47k Cie= Ry (1+(o1)(1+a)2)
0.1uF 100k R; 1
Aqp = =
R O(i)zz T § <Z- SRR Cr(Ry + R Ry )
2 002 0
1k % 0, =— _ 1
2 —
o l ( & C1R; Ca(Rq|Ry|Ry)
(1+ ‘ S J 1+ ~ S
7 A R PR >0 J| 2IRp >0
A %0 (1+5)r1+5)
RL RL—)O ! \ @2
where A . RLR
0 1T _
ROO ~ A 1 Ry ‘ Rl HRL
Rp R;—0 Rp Ry+Ry R;—0
1
| = = 0 ;| = 0
vo.Rper  C1R, http://www.RDMiddlebrook.com Rp —0 28
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Exercise 7.2 )
Find the inner output impedance Z,,

v Ry vy = Avy (1 + af)
AM—1 ' — Z, =Ry, z
47k N s S
G Ry (1+a>1)(1+wz)
0.1uF 100k 1
R.n=Rq|R
C2 —— * § 00 1” L “1 Cl (R2 +R1HRL)
R, 0.002uF| Z,
1k o =1 _ 1
*" CqR 2=
P l l o 1R Ca(Rq|Ry|Ry)
v.0.1 3/07 http://www.RDMiddlebrook.com 29
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Exercise 7.2 - Solution

v Ry vy = Avg (1 + af)
MAN ' ' —< Z, =R, 2
47k i s S
Cl Rp (1+a>1)(1+0)2)
0.1uF 100k 1
R = Rl RL w =
C2 et - * § 00 H Cl (R2 + Rl H RL)
R, 0.002uF| Z,
1 1
: “zT iR 2=
<, S é © 172

Z,

*
= ZO‘RL_)OO =Ry
[1+ S ](1+ S ]
where P1IRp - D2IRp -

Ryp = Roo\RL_mo =Ry |Rr ‘RL—>oo =Rq

1 1
a’l‘Rwofcl(RzmlHRL "G (R Ry) <

)‘RL —00
1 1

0)2‘ = = <
vo18em*  C, (Rl IR, | Rﬂp).’%;[%gﬂlﬁf_?r(kfﬂﬂz) 30




Bottom Line

The Input/Output Impedance Theorem allows you to
find the input and output impedances of a circuit by

taking simple limits upon the already known gain.
This saves almost two-thirds of the work required to

obtain the three results separately.

Taking one limit upon the gain gives the outer impedances;
Taking two limits upon the gain gives the inner impedances.

A huge simplification occurs by anticipating that factors in

the gain that do not contain the source or load impedance,

4/911&8; appear in the Egpﬁm.RDMiddlebrook.com 31
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8. NDI AND THE EET:

Null Double Injection and the Extra Element Theorem

How to find the contribution of a particular element to the
transfer function

v.0.1 3/07 http://www.RDMiddlebrook.com
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Null Double Injection (ndi)

Usually, a transfer function (TF) is calculated as a response to a single

independent excitation.

However, large analysis benefits accrue when certain constraints are

imposed on several excitations present simultaneously.

v.0.1 3/07 http://www.RDMiddlebrook.com
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signal
output

Uy = Aqu;

The input is an independent signal, the output is a dependent signal.

The gain is A;.

v.0.1 3/07 http://www.RDMiddlebrook.com
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Consider a second dependent signal, a voltage v at some internal port :

signal
output

Uy, = Aqu;

The gain from u; to v is Bj.

v.0.1 3/07 http://www.RDMiddlebrook.com
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Apply a second independent signal, a current i at the same internal port:

The "gain" from i to v is a driving point impedance B,.

v.0.1 3/07 http://www.RDMiddlebrook.com 5
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Apply both independent signals simultaneously:

For a linear system model, the two dependent signals are the superposition

of the values they would have for each independent signal separately.

v.0.1 3/07 http://www.RDMiddlebrook.com 6
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Apply both independent signals simultaneously:

For a linear system model, the two dependent signals are the superposition

of the values they would have for each independent signal separately.

By adjustment of #; and i, u, can be made to have any value we like.

In particular:
u, can be made zero by adjustment of the relative values of u#; and i,
namely
_ A
u,=0 - Aq %ttp :/lIwww.RDMiddlebrook.com 7
8. NDI & the EET
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There is now a null double injection (ndi) condition:

U, =
(nulled)

The voltage at the internal port is

U=(B2 _Bl %Jl
1

so the driving point impedance is

A
- (Bz — By AZJ
1

v.0.1 3/07 http://www.RDMiddlebrook.com
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Recap:

The driving point impedance (dpi) Z;,, at the internal port can have two

different values, one when the input is zero, and another when the

input is not zero, but is adjusted to null the output:

Z =B
dp ;=0 I2
from i
-
Z =B, -B; -~
dp 1, =0 2 1I Ay
from u;
v.0.1 3/07 http://www.RDMiddlebrook.com 9
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Recap:

The driving point impedance (dpi) Z;,, at the internal port can have two

different values, one when the input is zero, and another when the

input is not zero, but is adjusted to null the output:

V4 =B =/
dp ;=0 I2 d
from i
-
Z =By-B{—*= =7
dp 1, =0 2 1IA1 n
from u;
v.0.1 3/07 http://www.RDMiddlebrook.com 10
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The dpi Z; is calculated under single injection (si) conditions:

signal signal
input output
Oo— O
uj = Uy, = Aqu;
(zero)

Ug =

(nulled)

v.0.1 3/07 http://www.RDMiddlebrook.com 11
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The Extra Element Theorem (EET)

Replace the current source by an impedance Z :

The same linear superposition equations still apply to the rest of the circuit.

However, a relation between v and i is now enforced by Z, namely
v=-2i
Substitute for v to find i in terms of u; :
v =Bqu;+Byi=-Zi
SO
By
B2 +7Z

v.0.1 3/07 http://www.RDMiddlebrook.com 12
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The Extra Element Theorem (EET)

. B,
1=- u;
B2 + 7
Now substitute for i in the equation for u, to find u, in terms of u; :
By
U, = Aqu; + Ari=Aqu; — A u;
0 1%1 2 1%1 2 Bz +(Z 1 \
Ap
Ay By—B1 4
A B2 — Bl Ail + 7 A 1+ 7 Aq
=4 Ui =Aq Uj
\ J
v.0.1 3/07 http://www.RDMiddlebrook.com
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The Extra Element Theorem (EET)

signal
output

The two combinations of the linear circuit parameters are precisely what

have just been defined as Z; and Z,,, so

Z
1+7
Ug = Al Zd u;
1+z
v.0.1 3/07 http://www.RDMiddlebrook.com 14
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The Extra Element Theorem (EET)

signal
output

The two combinations of the linear circuit parameters are precisely what

have just been defined as Z; and Z,,, so

Z
1+7
Ug = Al Z, u;
1+7
However,
uo _ L] L]
u; = 8ain in presence of Z
‘é(ll:BIgﬁln when Z = o http://www.RDMiddlebrook.com 15
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The Extra Element Theorem (EET)

signal
output

The two combinations of the linear circuit parameters are precisely what

have just been defined as Z; and Z,,, so

Z
1+7
Ug = Al Z, u;
1+7
However,
Yo _ 5aini =H
u; — 8ain in presence of Z
‘é(ll:BIgﬁln when Z = o http:/M@DMiddlebrook.com 16
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The Extra Element Theorem (EET)

signal
output
U
u, = Hu;
Hence, the Extra Element Theorem (EET) is:
1+ ZZ”
H=H, <
1+°4
Z
H = gain in presence of Z H,, =gain when Z =
Z;=2 Z,=7
4= Sdply.—o n = Sdpl, o
u; = Zero u; # zero, u, nulled
v.0.1 3/07 http://www.RDMiddlebrook.com
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Dual forms of the EET
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The Parallel and Series forms of the EET
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Exercise 8.1
Insert C; by the EET
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Exercise 8.1 - Solution
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Exercise 8.1 - Solution
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Exercise 8.2
Lag-lead network: Find A by designating C; as an extra element.
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Exercise 8.2 - Solution
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Special case: The EET for a self-impedance
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Exercise 8.3
Lag-lead network: Find Z; by designating C; as an extra element.
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Exercise 8.3 - Solution
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Exercise 8.3 - Solution
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Exercise 8.4
Lag-lead network: Find Z, by designating C; as an extra element.
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Exercise 8.4 - Solution
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1CE: The basic Common-Emitter amplifier stage
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Note that the Z,, calculation is much shorter and easier

than the Z; calculation!
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Common-emitter (1CE) amplifier stage
Use the EET to find the outer and inner input impedances Z; and Z

-A, vUs Prev1ou§ re§ults s/
A’U — Avm ﬂ — 36613 880/MHZ
1+s/w, 1+ 527
10k R R 51kHz
<+ A, =—23B I _62= 364B
7 Rg+Rp, _ Rs|Rp
Js 0 ¥ 14
R, =rg/a=36Q 'IH{d=mRL=620k
o _ 1 1 _ Rs|Rp|@+ Py,
. . z = 5. = =
Outer input impedance Z; : CiRy, 7 CiRy Rs|Rp [ |RL

Use the parallel EET with reference value Z =1/sC; infinite:

U_S_ R. 1+SCtRni

y4 =
"js " 1+sCeRy;

R, = Rg + Rg |1+ B)ry,, =13k = 82dB ref 1Q

Ry; = Ry, with output vg nulled
= Ry, with input jg shorted

v.0.1 370‘7de for the VOltagﬁttngMiddlebrook.com
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Use the EET to find the outer and inner input impedances Z; and Z

-A 0Us Prev1ou§ re§ults s/
S/ @
Ay = Aym 1+s/a)z =36dB 1 8850/]\2452
10k R P R T 51kHz
<+ A, =—23B I _62= 364B
Rg+R Rg|Rp
Js Zo ST+
R, =rg/a=36Q 'IB{d=mRL=620k
¢ _ 1 _ 1 _ Rs|Rp|@+ Py,
. . z = = -5 = =
Outer input impedance Z; : CiR, 7 CiRy Rs |Rp | |RL
p p i
v 1+sCsR,;
Zz E—Sz R: t™Mm

js " 1+8CiRy;
R;;, = Rg + Rg |1+ B)ry,, =13k = 82dB ref 1Q

Rg |Rg |1+ Ay,
Rs |Rp [t |RL

Rni = mRL = RL = 620k

v.0.1 3/07 http://www.RDMiddlebrook.com 100
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Use the EET to find the outer and inner input impedances Z; and Z

-A 0Us Prev1ou§ re§ults s/
S/ @
Ay = Aym 1+s/a)z =36dB 1 8850/]\2452
10k R P R T 51kHz
<+ A, =—23B I _62= 364B
Rg+R Rg|Rp
Js Zo ST+
R, =rg/a=36Q 'IB{d=mRL=620k
¢ _ 1 _ 1 _ Rs|Rp|@+ Py,
. . z = = -5 = =
Outer input impedance Z; : CiR, 7 CiRy Rs |Rp | |RL
p p i
v 1+sC:R,;
Zz E—Sz R: t™Mm

js " 1+sCiRy;
R;;, = Rg + Rg |1+ B)ry,, =13k = 82dB ref 1Q
Rg |Rg |1+ Ay,

Rni = mRL = RL = 620k
Rs |Rp |t R
Rg; = Ry, with input jg open
v.0.1 3/07 http://www.RDMiddlebrook.com
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Use the EET to find the outer and inner input impedances Z; and Z

-A 0Us Previous results: /2
Ay = A —L . ; Zz =36dB— +8850/]‘24£Z
10k P 51kHz
<« 5 =_RB *RL__ _ 62 36dB
_ Z Rg+Rp . . RsRes
Js 0 m 1+§ ~ ~
R, =1 /a=36Q 4 =mRy =620k
o _ 1 _ 1 _Rs |Rg [+ By, _
Outer input impedance Z; : T CGR, PO CR; T Rg|Rp|n|Ry
Zi _ U_S _R. 1+SCtRni

js " 1+sCiRy;
R;;, = Rg + Rg |1+ B)ry,, =13k = 82dB ref 1Q
Rg |Rg |1+ Ay,

R,; =mRj = Ry =620k
" Rs HRB 1 R
Rg; = Ry, with input jg open
RB H(l + ﬁ)?‘m

o300 s =y g 5 o




Use the EET to find the outer and inner input impedances Z; and Z

-A 0Us Prev1ou§ re§ults s/
S/ @
A —A 4 =36dB SSOMHZ
10k T sl 1+ 55
<= _ RB aRL _
| i Avm_RS"'RB — R, 62 = 36dB
Js 0 m 1+£
R, =rg/a=36Q 4 =mRy =620k
& 1 1 Rs |Rp |1+ p)ryy,
. ] W= —— Op=_—— m= =
Outer input impedance Z; : Ct1;n CtRg Rs|Rp [ |Rr
s/2x
_9s _p. 1+5CtRni_ 1+51kHz
Z;=->=Ry, = 82dB 75
1s 1+sC¢Ry; 1+ 359kf71[z
39kHz
82dB \{SIkHz
Rim Z, R;,  80dB
Check:
R, 2
By GB trade-off: Ry, = Ry, 3% =13k 22%% _ 10k = 80dB
R, 820k
By imspection:  Rjo, =RgimBmDidiRiurook ol 0k = 80dB 103
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Use the EET to find the outer and inner input impedances Z; and Z

~A 0Us Prev1ou§ re§ults /2
Ap=Ag % = 364B ——S8OMH:
1+s/ @y 1+ Si=%
10k R R 51kHz
<+ A, =—23B I _62= 364B
Rg+R Rg|Rp
Js Zo ST
R, =rg/a=36Q 'IB{d=mRL=620k
- 6 _ 1 _ 1 ERSHRBH(1+,B)rm=
Inner input impedance Z; : T CR, P OCRy Rg HRB |7 |RL
*
1+SCtRm' _ R* 1+SCtRni

Z —7. : .
‘RS_’O " 1+sCsRy; " 1+sCiRy;
tdi Rg—0 tdi

Riy = Ripy| R0 = Rs + Rp [+ Py p o = Rp[(1+ pIry, = 2.9k = 69dB

N Rs|Rp|@+ B)ry,

R,: =R
ni m‘Rs—)O Rg HRB Hrm HRL

= Ry =10k = 80dB
RS—)O

v.0.1 3/07 http://www.RDMiddlebrook.com 104
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Use the EET to find the outer and inner input impedances Z; and Z; ;

—A 7)5
ER 10k s/2x
L
-« Z; =69dB 3-2MH:
S /4
Z, 1+ 39%H:z
39kHz

82dB 51kHz
\ Z; 80dB

69dB *
Check: Zi
* + Ry
By GB trade-off: Rioo = Rim R—
di
39kHZ |
= 2.9k 3.9 M~ = 35Q = 31dB 3.9 MHz 31dB

¥

By inspestion:  Rj,, = Rpitpily codRQesndldB

8. NDI & the EET
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Exercise 8.5
Use the EET to find Z, and Z, for the 1CE amplifier stage

—Av%s Previouﬁ re§ults: sl
Ao = Agmy = / 2 = 364B ——S8OMH:
10k TSl @p 1+ s1kmz
- 5 =_RB *RL__ _ 62 36dB
_ 7 Rg+Rp , _ Rs|Rg
Js 0 m 1+£
R, =rg/a=36Q 4 =mRy =620k
¢ _ 1 _ 1 _ Rs|Rp|@+ Py,
. z = = -5 = =
Outer output impedance Z,, : CiR, 7 CiRy Rs|Rp [ |Rr
Use the parallel EET with reference value Z =1/sC; infinite:
o =-2=

j—S "M 1+sCiRy,

R,;; = Rr =10k = 80dB ref 1Q

Ry = Rgp with output v, nulled = Ry, with input jg shorted
= Rg |Rg [+ B)r,, =2.2k

Rjo = Ry, with input jg open =R for the voltage gain A

v.0.1=83/1620k http://www.RDMiddlebrook.com 106
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Exercise 8.5: - Solution

Use the EET to find Z, and Z:; for the 1CE amplifier stage

s/2rx

1+
_ 14MHz
Z, = 80dB - s/

51kHz

82dB 51kHz
80dB Z, Z;
69dB *
Check: Zi
Rno
By GB trade-off: R, = R,,, R
do
51kHz
=29k . =36Q = 31dB 3.2MHz

14 MHz
By inspestion: R, = Ro|BplitmiBuadssdcn31dB

8. NDI & the EET
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Exercise 8.5: - Solution
Use the EET to find Z, and Z, for the 1CE amplifier stage

R,,, = Ry =10k = 80dB ref 1Q

R,, = Rg |Rg |+ By, = 2.2k

_ Rs|Rg|(1+ By,

do = Ry =620k
. Rs |Rp [y |Rp
Inner output impedance Z,, :
* 1+ SCtR + 1+ SCtR

ZO = ZO ‘RL—)OO = om 1+ C Rno = Rom ZZO
R,,, =R =R =

om Om‘RL—mo L R[ o0 0

. Rg |Rg |+ By,
Fio = Rl ™ g g Ry T

S B |"m L RL—)OO
v.0.1 3/07 http://www.RDMiddlebrook.com 108
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Exercise 8.5: - Solution
Use the EET to find Z, and Z, for the 1CE amplifier stage

R,,, = Ry =10k = 80dB ref 1Q

R,, = Rg |Rg |+ )y, = 2.2k

_ Rs|Rg|1+ Py,
do =
Rs |Rp |1, Ry

Ry =620k

Inner output impedance Z; :

Because R;m and R:lo both are infinite, change the Z, reference value

from R,,,, to R,,,. Then:

Z: 7, ‘R R, 1+sCiR,,, R, 1+1/sC¢R,,,
L% 1+SCth0 R; —o 1+1/SCth0 Ry —>o0
= Ry, (1+1/5C4Ryp)
* R
Rya13d%0m Rno = Rﬁﬂwmd\plﬁ@\%ar%kdgoﬁ Rg |Rp |1, = 36Q = 314B
do IR; - 8. NDI & the EET




Exercise 8.5: - Solution
Use the EET to find Z, and Z, for the 1CE amplifier stage

Z, = 31dB(1 + 1‘;%1;2)

Z; 80dB
i
3.2MHz 314B
14 MHz
v.0.1 3/07 http://www.RDMiddlebrook.com 110
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9. THE DT AND THE CT:

The Dissection Theorem and the Chain Theorem

How to find the gain of a multistage amplifier as the product
of separately calculated low entropy factors

v.0.1 3/07 http://www.RDMiddlebrook.com
9. The DT & the CT



Null Double Injection (ndi)

Usually, a transfer function (TF) is calculated as a response to a single

independent excitation.

However, large analysis benefits accrue when certain constraints are

imposed on several excitations present simultaneously.
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For any linear system model:

signal
output

u, = Aqu;

The input is an independent signal, the output is a proportional

dependent signal.

v.0.1 3/07 http://www.RDMiddlebrook.com
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Consider a second input, an injected "test signal” u,, :

Ug = Alu,- + Azuz
Uy

test signal

Since the model is linear, the output is now a linear sum of the values it

would have with each input alone.

v.0.1 3/07 http://www.RDMiddlebrook.com 4
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There are now two more dependent signals, u, and u,, where u, +u, =u, :

Ug = Alu,- + Azuz
U, =U, + uy

test signal
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There are now two more dependent signals, u, and u,, where u, +u, =u, :

Ug = Alu,- + Azuz
U, =U, + uy

test signal

The dependent signal u,, is also a linear sum of the values it

would have with each input alone.
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There are now two more dependent signals, u, and u,, where u, +u, =u, :

Uy Uy
O— O
Uy = Byuj +Bou, T uy =-Bqu; + (1-By)u,

signal
output

Ug = Alu,- + Azuz
U, =U, + uy

test signal

The dependent signal u,, is also a linear sum of the values it

would have with each input alone.

By virtue of u, = uy +u,, the independent signal u, can also be expressed

in terms of By and B,.
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Several transfer functions (TFs) can be defined:

Special case 1: u, =0

Ug = Alu,- + Azuz

1

v.0.1 3/07 http://www.RDMiddlebrook.com 8
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Several transfer functions (TFs) can be defined:

Special case 2: u; =0

signal

O
Uy = —Blui + (1 —Bz )uz
u, =(1-By)u,

Uy = Byu; + Byu,

uy = BZuZ Uy = Alu,- + Azuz

u, U, = Agu,

test signal

H="° =4
Ui u,=0
ux ui=0 1—32

These are single injection (si) TFs
v.0.1 3/07 http://www.RDMiddlebrook.com 9
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Several transfer functions (TFs) can be defined:
Special case 3: 1, =0
The two independent signals #; and u, can be mutually adjusted to null u,

signal o signal
input y : u, =—Bqu; +(1-By)u,

Ug = Alu,- + Azuz

B,
Uz o = Aquj — Ay g U

uy T
component of u, from u; ‘

component of u, from u,
adjusted to null u,,
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Several transfer functions (TFs) can be defined:
Special case 4: 1, =0
The two independent signals u; and u, can be mutually adjusted to null u,

. O
input u, =—Byu; + (1-By)u,
0 = _Blui + (1—B2 )uZ uo = Alul + Azuz

Uu; _ 1
H”y = Uo = A1 - Ay B_l
B
g =" —A 44, 1
1 2
u; _ 1—B2
u,=0 T

component of u, from u;

component of u, from u,
adjusted to null u,
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Several transfer functions (TFs) can be defined:
Special case 5:u, =0
The two independent signals u; and u, can be mutually adjusted to null u,

signal

O
uy =ABlui + BZuz Uy = —Blui + (1—32 )uz

A
=-Bq Ai”z"‘Bzuz Uy =By AiuZ‘F(l_Bz)u Uo = Aqu; + Ayu,

test signal O "z 0= Aqu; + Aqu,

HY ="  _a_a,01

ui u :0 BZ

’ B

H' =20  —Aj+Ay 1

u; ux=0 1- B2

T, = Uy _ MBy—AyBy
Uy A1 —(A1By — A3By)

u,=0

These are null double injection (ndi) TFs
v.0.1 3/07 http://www.RDMiddlebrook.com 12
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Assembled results, so far:

First level TF: = =Ay;  (si)

u _
Huy = u—o = Al — A2 B—l (ndi) Tn = ¥ = Ale AzBl (ndi)
Hily, —o B, Uxly =g 4N —(A1By - AyBy)
u .
Hux = u—o = Al + A2 Bl (ndi) = ¥ = Bz (si)
Hily =0 — D2 Uxly—g 1-B2

Note that A, and By occur only as a product A>B;.
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The benefit to be gained from these definitions is that there are useful

relations between these several TFs that do not involve the A's and B's.
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The benefit to be gained from these definitions is that there are useful

relations between these several TFs that do not involve the A's and B's.

The 4 second level TFs are defined in terms of the 4 original parameters
A1,A4A5,B1,B,. Since A, and By occur only as a product A,B;, there are
actually only 3 parameters and there must be a relation between the 4

second level TFs, which is

u
Redundancy Relation: HY T,
H"x T
v.0.1 3/07 http://www.RDMiddlebrook.com 15
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The benefit to be gained from these definitions is that there are useful

relations between these several TFs that do not involve the A's and B's.

A consequence of the Redundancy Relation is that the first level TF H

can be expressed in terms of any three of the four second level TFs
H"Y ,H",T,,T.

Two useful versions are:

1
o T 1
H=H"Y " H=H"Y —_+H"
141 1+T 1+T
v.0.1 3/07 T http://www.RDMiddlebrook.com 16
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These two versions, and the redundancy relation, can easily be verified
by substitution of the definitions. After this, the A's and B's are no longer

required, and will not appear again.
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Dissection Theorem (DT)

first level TF

Notation:
Superscript signal is
signal being nulled

Redunudancy Relation:
HY T,

HYx T
v.0.1 3/07
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u; _
uy—O
HY = Uo
u.

1 =
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These results constitute the Dissection Theorem (DT), so named because
it shows that a first level TF can be "dissected" into three second level TFs

established in terms of an injected test signal.

The DT is completely general, and applies to any TF

of a linear system model.

For example, H could be a voltage gain, current gain, or an input or output

impedance.

v.0.1 3/07 http://www.RDMiddlebrook.com 19
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There are many reasons why the Dissection Theorem is useful.

The minimum benefit of the DT is that it embodies the
"Divide and Conquer" approach, because one complicated
calculation is replaced by three calculations, two of which
are ndi calculations and are therefore simpler and easier than

si calculations.
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There are many reasons why the Dissection Theorem is useful.

The minimum benefit of the DT is that it embodies the
"Divide and Conquer" approach, because one complicated
calculation is replaced by three calculations, two of which
are ndi calculations and are therefore simpler and easier than

si calculations.

Why are ndi calculations always simpler and easier than si calculations?
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There are many reasons why the Dissection Theorem is useful.

The minimum benefit of the DT is that it embodies the
"Divide and Conquer" approach, because one complicated
calculation is replaced by three calculations, two of which

are ndi calculations and are therefore simpler and easier than
si calculations.

Why are ndi calculations always simpler and easier than si calculations?

Because any element that supports a null signal does not contribute to
the result, and because if one signal is nulled, often other signals are

automatically nulled as well, and therefore several elements may be

absent from the result.
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The Dissection Theorem can be represented by the block diagram

oF

uo = Hui

Important: The individual blocks do not necessarily represent

identifiable parts of the actual circuit!
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Check:

T,=H"'T lu
u, = Hu; H™x
o u
+\¢ A HY _ T,
H" T
1
y
1 uy u
E=Uj——— 1l u,=H Te+ H" " *u;
HY
uny, 1 ”
o =H T\ u;—— —uy [+ H *u;
H Y
(1+T)u, =(HuyT+H”x)ui
H=H" 1 4m¥ 1
1+T 1+T
v.0.1 3/07 http://www.RDMiddlebrook.com 24
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So far, nothing has been said about where in the system model the

test signal is injected.

Different test signal injection points define different sets of
second level TFs. Nevertheless, when a mutually consistent set is
substituted into the DT, the same H results:

1+.1 1+ 1
H=H yl Tin _ H”yZ Ty»
1+ 1+ .1
I I,
v.0.1 3/07 http://www.RDMiddlebrook.com
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This means that the blocks in the block diagram have different values

for different test signal injection points:

uo = Hui

Important: The individual blocks do not necessarily represent

identifiable parts of the actual circuit!
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This means that the blocks in the block diagram have different values

for different test signal injection points:

uo = Hui

Important: The individual blocks do not necessarily represent

identifiable parts of the actual circuit!
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Not only does the DT implement the Design & Conquer objective, but
the DT is itself a Low Entropy Expression, and much greater benefits

accrue if the second level TFs have useful physical interpretations.

Thus, the second level TFs themselves contain the useful design-oriented
information and you may never need to actually substitute them into the

theorem.

For example, if T,T,, >>1, H~ H "y
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How to determine the physical interpretations of the second level TFs?

What kind of signal (voltage or current) is injected, and where it is

injected, defines an "injection configuration."

Therefore, the key decision in applying the DT is choosing a test signal
injection point so that at least one of the second level TFs has the physical

interpretation you want it to have.
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Specific injection configurations for the DT lead to the:
Extra Element Theorem (EET)
Chain Theorem (CT)
General Feedback Theorem (GFT)

As usual, dual forms of the theorem emerge depending upon whether

the injected signal u, is a voltage or a current.
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The Extra Element Theorem

Inject a test voltage e, in series with an element Z such that v, appears
across Z:

signal
input

where:

o 2o r,=" Ty
U vy =0 Yx u;=0 Y luy=0
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The Extra Element Theorem

To find H Y, assume that e, and u; have been mutually adjusted to null v,, :

If v, = 0, there is no current through Z, and so the current

i into the test port is also zero, which is the condition that would exist
if there were no injected test signal and Z were open. Therefore,
H‘Z:OO = Hvy = u_o
Uj vy=0
where H|,__ is the first level TF H when Z =,

v.0.1 3/07 http://www.RDMiddlebrook.com 32
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The Extra Element Theorem

Tofind T;,, setu; =0:

1 u,-=0

Since Z and Z; are in series with the same current i,

0
T,=-"Y Z

v.0.1 3/07 http://www.RDMiddlebrook.com
9. The DT & the CT

33



The Extra Element Theorem

To find T,,,,, assume that e, and u; have been mutually adjusted to null u,, :

Since Z and Z,, are in series with the same current i,

Tw=2 =%
no — — 7
%1, —o n
0
v.0.1 3/07 http://www.RDMiddlebrook.com 34
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With the second level TFs replaced by the new definitions, the DT morphs
into the Extra Element Theorem (EET):

Z
1+7
+ _w
Z
v.0.1 3/07 http://www.RDMiddlebrook.com 35
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Dissection Theorem (DT)

first level TF

Notation:
Superscript signal is
signal being nulled

Redurhdancy Relation:
HY T,

HYx T
v.0.1 3/07

Huy Eu_O
u; _
uy—O
HY = Uo
u.
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There are many reasons why the Dissection Theorem is useful.

The minimum benefit of the DT is that it embodies the
"Divide and Conquer" approach, because one complicated
calculation is replaced by three calculations, two of which
are ndi calculations and are therefore simpler and easier than

si calculations.
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There are many reasons why the Dissection Theorem is useful.

The minimum benefit of the DT is that it embodies the
"Divide and Conquer" approach, because one complicated
calculation is replaced by three calculations, two of which
are ndi calculations and are therefore simpler and easier than

si calculations.

Why are ndi calculations always simpler and easier than si calculations?
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There are many reasons why the Dissection Theorem is useful.

The minimum benefit of the DT is that it embodies the
"Divide and Conquer" approach, because one complicated
calculation is replaced by three calculations, two of which
are ndi calculations and are therefore simpler and easier than
si calculations.

Why are ndi calculations always simpler and easier than si calculations?

Because any element that supports a null signal does not contribute to
the result, and because if one signal is nulled, often other signals are

automatically nulled as well, and therefore several elements may be
absent from the result.
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Not only does the DT implement the Design & Conquer objective, but
the DT is itself a Low Entropy Expression, and much greater benefits

accrue if the second level TFs have useful physical interpretations.

Thus, the second level TFs themselves contain the useful design-oriented
information and you may never need to actually substitute them into the

theorem.

For example, if T,T,, >>1, H~ H "y
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How to determine the physical interpretations of the second level TFs?

What kind of signal (voltage or current) is injected, and where it is

injected, defines an "injection configuration."

Therefore, the key decision in applying the DT is choosing a test signal
injection point so that at least one of the second level TFs has the physical

interpretation you want it to have.

v.0.1 3/07 http://www.RDMiddlebrook.com 41
9. The DT & the CT



Another special case of the DT leads to the Chain Theorem (CT).

The test signal injection configuration is such that the entire signal

from the input flows to the output (no bypass paths).

v.0.1 3/07 http://www.RDMiddlebrook.com
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The Chain Theorem (CT)

. 7
Ayp =AY o
v12 012 1+ %
1

The TF T); =1, /i, 0 is an ndi calculation with the output v, nulled.

If v, is nulled, so is i,,, so T,,; = oo.
This implies that T,,; is infinite unless the signal can bypass

th‘éliﬁ‘j’éction point. http://www.RDMiddlebrook.com 43
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The Chain Theorem (CT)

Nulled 7;, means that the A;; box is unloaded, so the input voltage to the
Ay» box is the open-circuit (oc) output voltage of the A,,; box.

l L] o
Thus, A}, = Ay1 Ay, is the voltage - buffered gain of the two stages.
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Also T 11 v /Z Zi
1 = . - - J
Ixlpg Y/ Zi2lg—g Zo1
so the DT becomes
Z;»
Ap12 = Ap1Ayo :
¢ R Zin+ Z

This can be interpreted as
{ gain } {Voltage buffered gain} X[ voltage loading factor }

of the two stages of the two stages between the two stages
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The Chain Theorem (CT)
This is exactly the result that would be obtained directly from the model:
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The Chain Theorem (CT)
A useful application of the DT with T,; = « is to assemble the properties

of a 2-stage amplifier from the properties of each separate stage.
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The Chain Theorem (CT)

This "Divide and Conquer" approach avoids analysis of both stages

simultaneously.
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The Chain Theorem (CT)

_ L Zp
: 1+ Ti Zi2 + ZOl

where AJ{ A, is the "voltage buffered" gain that would occur if there were a
buffer between the two stages, and D; is a "discrepancy factor" that accounts
for the interaction between the two stages which results from the loading

of the first stage by the input of the second stage.
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The Chain Theorem (CT)

1
Ayip = Ay Ay 1 = A1 Ay D;
1+
ty
Zol

Since all TFs will be in factored pole-zero form, the only place where
additional approximation may be needed resides inside the D;, where the

sum of two TFs is required.

"Doing the algebra on the graph" can be conducted in two ways:
1+ T; can be found as the sum of the TFs 1 and T;, dominated by the larger;

D; can be found from 1 1+ 1.1 + 1 as the reciprocal sum of 1 and T},

D, T, 1 T
domingted by the smaller.
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Let each stage be the 1CE stage previously treated.

_AU%S 1-s/w 1 s/2x
AU — A’()m Z _ 36dB 880MHz
1+s/w, 1+ S/27
10k 51kHz
- 5 =_RB *RL__ _ 62 36dB
4 Rg+Rp Rs|Rp
Js Y Ym + 1+£
R, =1, =360 4 =mRj =620k
¢ 1 1 _ Rg|Rg |+ By,
TR, TRy M7 -
tRn tRd Rg HRB H”m HRL
s/2
Z:=R: 1+5CtRy; — 824B 1+ 51k1§z 7 - 1+5C¢Ry0
b 14+sCiRy 1+ 359/k2§z ° 14 5CiRy,

Rin=Rs+Rp|1+ P, =13k = 82dBref1Q  R,,, = R; =10k = 80dB ref 1Q

Rs|Rg |1+ A1y,

R, ; =mRj = R; =620k R,, = Rg|Rg |1+ B)r,, =2.2k
ni L RS HRB H”m HRL L no S H B H m

Ry = Rg H(le+ ﬁlr’" R; =820k R, = mR] = 620k

v.0.1 3/07 BTm 7L http://www.RDMiddlebrook.com
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However, to make the symbolic equations more compact, without loss of

generality, let Rg > 0 and ¢ > 1 (f > ©).

To keep R;m the same, also let Rg|(1+ B)r,, = 2.9k > Rp
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The new 1CE stage is:
s/2x

a = 1 _AUUS 1 / 1
Cy ' © _ -slw, _ ~ 880MHz
shl i A= Aoy, = =49dB 5557
p E 1+s @y 1+
vg 0 Ry g 10k R 3.2MHz
v I <+ A, ="L=280=494B
r y4 Tin
= Rg S m 0
7. 29k 36 R, = 1, = 36Q R; =Ry =10k
o L : o 1
CR, CiRy
C.R + s/2x
Z: =R, 1+sCe Ry _9dB—_32MHz 5 _p 1 g0 1
L Rp 1+ S/27 o= Nom s, Ry 14 sl2z
39kHz toL 3.2MHz

1+sCeRy Rg |1 |RL
R,,, = Ry =10k = 80dB ref. 1Q

Rim = RB =29k = 69dB ref. 1Q

Rni = mRL = 10k Rno =0

Rdi = RB H(l * ﬂ)rm RL = 820k Rdo = mRL =10k
Rp Hrm HRL .
http://www.RDMiddlebrook.com 53
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_ —A B
a=1 vy _ Ry 1-5Cyry,, 880 MHz
Ct J_ v =494B s/2rx
R 10k
vSA 0 . L 5/272'
v 1 g <= 7.-R 1+sCyRy —69dBl+ 3.2MHz
’ 7 i~ B Rg 14 8/27
= §RB n 0 1+sCiRy Rg|rm| Ry 39kHz
7 2.9k Y 36 Bl'mI=L
i
& © 1 1
o= "L R = 80dB s/2x
1+sCeR 1+ 35MH:z

R;,, = Rg = 694dB

880MHz ™~

http://www.RDMiddlebrook.com 54
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Cy © Cy ©
5p J: iF 5p J: iE
Ry 210k Ry 210k
vg, 0 L . 0 L
iE § i i v iE g <+
Y x
+ 3Ry o <= 7 > 3Ry o Zo
Z; |29k Z 1 Jz Z, |29
o ¢ © —d ©
The DT gives
oc
Ap12 = Ap1Ay2D; (Tm' = o0)

The buffered gain A9{ A,» is the product of the two separate gains,
where A, is already open-circuit:

1-— s/2x 2

AJ{Ayp =98dB| —SSONz
1+ 3 2MHz
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98dB 1- s/2x 1- s/2x

Agisz — 98613 880MHz 880MHz

s/2x s/2x
1+ 350mz 1t 30MH:z

3.2MHz _ 404B/ dec

880MHz
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3.2MHz

39kHz 1
EEEEEEEEEEEEEEEEE|y, ’ ~ [ ZOl:SOdBl S/Zﬂ'
e, ~ , + 3.2MHz
4 Sl2x '~.,.. ~
Zi2 — 694B 3.2;WHZ '..... ~ N
1+52” ...IIIIIIIIIIIIIIIIIIIIIIIIIII.IIIIIIIIIII
39kHz .
~
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2
s/2x
7. (1+ )
ZO1 1+ S T
39kHz
39kHz
|| [ ] [ | | | | | | [ ] [ | | | | | | || [ ] I. \ 201 =80dB /2
EEEEEEEEEEEEEEEER ...... a ~ ) 1+3.2 Hz
+ 5/2” ...... \ N
L
Ziz =69dB 3.2}WHZ ..... ~ »
1+ s 2” ....IIIIIIIIIIIIIIIIIIIIIIIIIII.IIIIIIIIIII
39kHz .
I
39kHZ' i
3.2MHz
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Ll or +-1.1 D; =1T;

The discrepancy factor D; =

is dominated by the smaller:

0dB _—

—11dB |
—13dB
3.2MHz
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Ll or +-1.1 D; =1T;

The discrepancy factor D; =

is dominated by the smaller:

0dB |

“134B
39kHz" 50 p,

3.2MHz
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1 1 1 1

The discrepancy factor D; =——— or —=—+— or D; =1|T;
pancy i N % D, 1T, i H i
1
is dominated by the smaller:
8SOMH=z
0dB J/

—13dB
1+ s/2x 1+ s/2x

3.2MHz 3.2MHz

39kHz" 501H,

D1 =_13dB 1+ s/2xm 1+ s/2xw

50kHz 880MHz

3.2MHz

All these graphical constructions can be conducted symbolically to

give the result for D; in low entropy factored pole-zero form.
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Final step: assemble A1, as the product of the buffered gain and the

discrepancy factor:
s/2zx s/2zx
98dB A% A, = 98dB 1 - s80MHz 1~ 880MHz

s/2xw s/2xw
1+ 3oMmaz 1+ 32MHz

85dB —40dB/ dec

50kHz
1 _ s/2xw 1 _ s/2x
Ayqp = 85dB — 880MHz ~~ 880MHz

s/2x s/2m
0dB 1+ 50kHz 11 ssoMH:z

-13dB
s/2x 1+ s/2x

50kHz D. - _134p T 32MHz 1T 32MH:
1 1+ s/2x 1+ s/2x
50kHz 880MHz

3.2MHz
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The fact that D; is less than 1 over most of the frequency range indicates

that the second stage imposes heavy loading upon the first stage:

a=1 —Ay10s a=1 Ay127s
Sp F E l_Z'2+Z 1 5p = iE
USA 0 RL§10k 1 OA 0 RLglok
v iE ) i i v iE <=
Yy X Z
- 3Ry o <= T > 3Ry o 0
/\Zl 2.9k | Zoll\ ]z J\ZiZ 2.9k | .
0dB |
|
_134B ‘ 880MHz
50kHz
3.2MHz
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The fact that D; is less than 1 over most of the frequency range indicates

that the second stage imposes heavy loading upon the first stage:

a=1 - Av<1>vS 7 a=1 Avl%vs
C; - _ i2 |
L 1 iE Di=_—"~ sl Lo
Vs 0 Ry 210k i2 7 <ol 0 Ry 210k
Y X
- 3Ry o <= T > 3Ry o Zo
- Z; 29k_ Zyy = Zp 29k_ )
0dB |
|
1348 ‘ 880MHz
50kHz
3.2MHz

This suggests that the first stage behaves more like a current source than

a voltage source, and therefore that the analysis might be better
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The Chain Theorem (CT)

The gain A, = Yo is given by the DT:
€;
v, 1+ T
Avlz = Ale 1
+ Tv
The TF T}, = vy /vy 0 is an ndi calculation with the output v, nulled.
0p=

If v, is nulled, so is v,, so T,,;, = .

This implies that T,,,, is infinite unless the signal can bypass
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The Chain Theorem (CT)

Nulled v, means that the A;; box is shorted, so the input current to the
Ao box is the short-circuit (sc) output current of the A1 box.

A .
Vi1 = Zvl Linp=ZijpAys
ol

= forward = forward

transadmittance transimpedance
gain : gain

’v L] [
Thus, A %, = Y1 Zy, is the current - buffered gain of the two stages.
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signal
output

vx ei=0 ile e.=0 le
so the DT becomes 7
A1 =Yi1Zyy ol
Zi2 + Zol

This can be interpreted as
[ gain } {current buffered gain} X{ current loading factor }

of the two stages of the two stages between the two stages
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The Chain Theorem (CT)
This is exactly the result that would be obtained directly from the model:

SC
Ap12 = Y1 Zyo
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The Chain Theorem (CT)
A useful application of the DT with T,,, = « is to assemble the properties

of a 2-stage amplifier from the properties of each separate stage.

v.0.1 3/07 http://www.RDMiddlebrook.com 69
9. The DT & the CT



The Chain Theorem (CT)

This "Divide and Conquer" approach avoids analysis of both stages

simultaneously.
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The Chain Theorem (CT)

where Yi{ Z;, is the "current buffered" gain that would occur if there were a
buffer between the two stages, and D,, is a "discrepancy factor" that accounts
for the interaction between the two stages which results from the loading

of the first stage by the input of the second stage.
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The Chain Theorem gCT)
Ap1r = Y51 Zy4r = Y1 Z4»D,,

1+ 11
tm U, =0
— WA
Zol
0. 2
ys¢ y4_01 —
11 €
Y1 N

Since all TFs will be in factored pole-zero form, the only place where

additional approximation may be needed resides inside the D,,, where the

sum of two TFs is required.

"Doing the algebra on the graph" can be conducted in two ways:

1+ T, can be found as the sum of the TFs 1 and T,,, dominated by the larger;
1 1 1 1

D, can be found from — =1+ _—=—-+ — as the reciprocal sum of 1 and T,
0 TU 1 T?J

do\}‘8]1 E?H’ d by the smaller. http://www.RDMiddlebrook.com 72
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a=1 -A, v sc A 1
Ct J_ Z)GS Yt =—v=r—(1—SCt1’m)
5p o= i o 'm /
Ry 210k s/2x
s, 01 7L =-31dB (1 - —)
v () g <= 880MH=z
y4
»> 3R $'m 0
1-sC
Z; |29 36 Z,-Z,A, - eraRL (1-s thR)
¢ © m (1 +8CiRy B j
RBHrmHRL
-k ( S/Zﬂ' )
| ] [ ] [ | | | | | | . Z -_———
118dB N _1184g\  880MHz
~ ( s/2x )
'~ 1+ H
'~ . 39kHz
\ L}
\ N
\  J
~ . -
0dB 39kHz 880MHz
—~31dB Y5
V_o_1.3/07....................Hﬂﬁ:rlm_wDMddlébrddCCGm...............T‘ 73
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Ct © v~ Ct ©
5p J: i Zip+2Zo1 5p J—. ip
vs. 0V RL§10k f\ez . 0V RL§10k
1F ) — c_'l'f+ i 1F 2‘
i S IR T ’
. Z; 2.9k | Z o1+ - . Zin |29 R
The DT gives
Ap12 = Y1 Z12Dy (Tio =)
The current buffered gain Y7 Z;, is the product of the two
separate gains:
(1-gsr2e )2
Y Z,, = 87dB3 200 MHz
(1+ s/2x )
39kHz
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2
| | | | | || | * 1 — 5/2”
v s/2x
87dB ~. (1 + 39kHz)

_31dB Y1
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39kHz
|| [ ] [ | | | | | | T [ ] [ | | | | | | || [ ] I \ ) Z()l — SOdB 1

EEEEEEEEEEEEEENENE|y S/Zﬂ'
Yre, ~ 1+
.\ s/ ....... L ~ . 3.2MHz
Z;, =69dB ——32MH:z .
1+ 5/2” ... EEEEEEEEEEEEEEEEEEEEEEEEN NN N EEEEEEEEER
39kHz [ .
3.2MHz ~
Zo1 . :
Z,1 and Z;, are the same, but note that T}, = oL s the reciprocal
2
Z; !
of Ti = 12 .
Zo1
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T, = —?’1 —11dB 33"HZ >
s/2x
R | I L EE A A R S A - R e 12 (1 + 3.2MHZ)
.I..I..I..I..I..III...
.......... -
... ~ ~
....r.-..-..- LAl iRl R Rl R Rl RN R0 RRIR] D
114B - 3.2MHz TN
0
Zol . .
Z,1 and Z;, are the same, but note that T;,, = —~ is the reciprocal
2
Z; ’
of Ti = ~12 .
Zy
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1 1 1 1
1+Tlv D, 1 T,

The discrepancy factor D, =

is dominated by the smaller:

L u | | | ] L u | | | ] L u 1 5

Illlllllllllllllll... L J

b,
a,
.... ~y
b,y

11dB

—2dB s/2x

39kHz

s/2x s/2x
(1 + 50kHz)(1 + 880MHz)

D, =-11dB

All these graphical constructions can be conducted symbolically to

give the result for D, in low entropy factored pole-zero form.
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Final step: assemble A,1, as the product of the buffered gain and the

discrepancy factor:

87dB

85dB s

1 _ S/Zﬂ' 1 _ S/Zﬂ'
A . —85]B__ 880MHz ~— 880MH:z
v12 1 + S/27Z' 1 + S/27Z'

H
04dB | I50kHz 880 MHz
D |
~24B vl ’
50kHz
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Final step: assemble A,1, as the product of the buffered gain and the

discrepancy factor:

87dB

85dB s

Vi1 Zs
1 _ S/Zﬂ' 1 _ S/2ﬂ'
A,y = 85dB — 880MHz ~~ 880MH:
0

s/2xm s/2x
0dB 1|+ 50kHz 1T 880MHz
|

“2dB o |
50kHz

The fact that D,, is close to 1 over most of the frequency range confirms
the expectation that the first stage behaves more like a current source

than a voltage source.
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Summary:

The DT allows assembly of the properties of a 2-stage amplifier from

the properties of each separate stage.

This can be done by injection of either a test current j, or a

test voltage e, at the interface:

iy vy
Av12 = AvlzDi Ale = AvlzDv
U

where A 1o = Ap1 Ay where Ay, =Yi1Zsy

is the voltage buffered gain is the current buffered gain
Z; Z
and D; = 12 and D, = 0l
Zi» +Zo1 Ziz +Zo1

are the discrepancy factors representing the interface loading.
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In principle, this procedure can be extended to the addition of extra stages:

signal
output

Ay123€;

In practice, this procedure becomes cumbersome because the discrepancy

factor for the first interface changes when a second interface is added.
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However, there is an alternative form for the gain of 2 stages that

circumvents this problem.

The DT results already obtained are:

Z: P Z 1
Ay =AY D, = AY ’ Ayjp =AY D, =AY 0
(4 v12 v12 le +Zol (Y v12 v12 th +Zol
Rewrite:
1 Zi2 1 1 ZOl _ 1
_ . .
Ale Zi2 + Zol Avlz Avlz le " ZOl Av%Z
Add the two:
1 1
A Yy
012 Avlz
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1 1 1
= +
Oy
Ale Ale

Ale

This simple and elegant result says that the interface discrepancy factors
D; and D, are not needed, and the overall gain is a "parallel combination"
of the two buffered gains:

1y Oy
Ay12 = Avlz Avlz

where A 15 = Api1Ayp = voltage buffered gain of the 2 stages

and Ale =Y7{Z;» = current buffered gain of the 2 stages

This result is actually the Chain Theorem (CT), and A, A,o, Y51, Z¢o
are the (reciprocals of the) chain parameters (c parameters).
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Rework the previous example:

v.0.1 3/07 http://www.RDMiddlebrook.com
9. The DT & the CT

85



Rework the previous example:

a=1 Ay120s
J_ ©
L i
0 RL g 101(
ip <=
Rp Tin Z0
2.9k 36
©

1 _ S/Zﬂ' 1 _ S/Zﬂ'
oc _ 880 MHz 880MHz
Ay1 Ay = 98dB s/2x 1+ s/2x

984B _'\ / 1+ 3ommz 1+ 32MHz
~

32MHz N\
N
N
N
~ ( 880MHz

N

v.0.1 3/07 http://www.RDMiddlebrook.com
9. The DT & the CT

86



Rework the previous example:

a=1 - Av(l)”S a=1 Ay127s
Ct C; '
5p J: ip —ny.\ + 0y 5p J: ()3
g, 0 Ry g 10k | —4) 0 Rp § 10k
iE i g iE <=
- SRg gm <= +> 3Rg o Zo
Z; |29 Zyq Z., |29
g : © —& - o

1-— s/2x 1- s/2x
oc _ 880 MHz 880MHz
Ap1Ay2 =98dB s/2z 1, sl2x

984B 1+ 3 ommz 1+ 32MH:z
E EEEEEEEEEEEEEEEETR \ s/zﬂ.

N 2
..'... 1-—
T “ao, 3.2MHz ~ Yi'gchtZ — 87dB ( 880MHZ)

"... ~ ( s/2x )
e, N 1+ 30k
..'... \
‘e, ~ .
..'.. 880MHz ““
....\ “““
..hn ““
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Rework the previous example:

a=1 Avl<2>US
[ il
5p - — iE
vg 0 0 Ry g 10k
° ip .
=> Rp Rp I'm Z,
7. 29 2.9k | 36
1
o ©

S/Zﬂ' 1 _ S/Zﬂ'
~ 880 MH 880 MH
A%sz - 98dB s/2x i 1+ s/2x -

984B 1+ 3.2MHz 3.2MHz
s/2x

2
1-—

s/2x
\ (1+39kH)
~
1—_s/2z 4 _ s/2z \\ 880MHz
A — 858 880MHz ~ — 880MHz Les®®
v12 14 8/27 1, s/2x S A

50kHz 880MHz
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The CT is the key to implementation of the "Divide and Conquer'
approach to D-OA.

The procedure is:

ocC
Ay1o6;

Find A9 and Y of stage 1, and Z{5 and AJ5 of stage 2.
Combine them by the CT to find AJj,, as above,

v.0.1 3/07 http://www.RDMiddlebrook.com
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The CT is the key to implementation of the "Divide and Conquer”
approach to D-OA.

The procedure is:

ocC
Ay1o6;

Find A9 and Y of stage 1, and Z{5 and AJ5 of stage 2.

Combine them by the CT to find AJj,, as above, and hence find Y;75.
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The CT is the key to implementation of the "Divide and Conquer"
approach to D-OA.

The procedure is:

ocC
AleBi

Find A9 and Y of stage 1, and Z{5 and AJ5 of stage 2.
Combine them by the CT to find AJj,, as above, and hence find Y;75.

ocC
Ay123€;

Find Z{5 and A5 of stage 3.

Combine them by the CT to find AJ7>3.
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