

Venable Instruments Training Session

Stabilizing Power Supply Control Loops

Venable 7.0 Stability Analysis Software

Version 7 Stability Analysis Software

- Python based: platform independent and fewer lines of code
- Docking windows and tabbed structure
- Multiple graphs with multiple plots can be saved in one file
- Software uses Windows[®] USB driver
- Plug and play with easy connection to the analyzer
- Compatible with Windows® 7, 8, 8.1, 10 and 11

Specifications

Venable 7440

- 10 **µ**Hz to 5/20/40 MHz
- 2, 3, or 4 Input channels
- 10mVpk-500Vpk input range
- Generator and channels isolated to 600 Vpk
- Can measure absolute phase referred to the generator
- IEEE 488 and USB 2.0 are standard interfaces

Loop Gain Measurements

- Stability Criteria
- Loop Gain Measurements
- Stabilizing Feedback Loops

Closed Loop Circuit Bode Plot of Loop Gain

A LITTLE BIT ABOUT SIGNALS

$$IN \xrightarrow{G} OUT$$

G
$$a \neq \frac{1}{H} \times \frac{G}{1+G} + \frac{H}{H}$$

Loop gain is <u>not</u> GH. Loop gain <u>is</u> -GH.

Closed Loop Circuit

Measuring Loop Gain with the Loop Closed

- Select a point in the feedback loop where the loop is confined to a single path
- A low impedance is driving into a high impedance

Injection Method

Loop Design Example – TPS54320 Synchronous Buck

Analyzer Setup

Loop Gain Bode Plot

Modulator (Control-to-Output) Bode Plot

HOW TO COMPENSATE A LOOP

Measure/model the control-to-output transfer function.
 G(s)

Decide on an overall loop bandwidth and phase margin.

$$F_c = 30 \text{ kHz}, \ \Phi_m = 60^{\circ}$$

ullet Design the error amplifier gain at crossover, $f_{\rm c}$.

$$Gc = 6.23008 \text{ dB}, H_c = 1/G_c = -6.23008 \text{ dB} = 0.4881$$

Design the error amplifier phase boost at f_c.

Boost =
$$\Phi$$
m - Φ (G_c) - 90°, Φ (Gc) = -103.36°
Boost = 73.36°

Circuit Analysis and Synthesis Menu

Choose an Amplifier Topology:

Error Amplifier Topology

2	▼ 1,2 or 3	Op Amp Selection		
		default.AMP		
Transconductance	-	Open Op Amp File	Save Op Amp File	
10 k	Ohms	Bandwidth	10 M	Hz
3.3	VDC	Gain	69.8	dB
800 m	VDC	Transconductance	1.3 m	Mhos
800 m	VDC	Internal R	2.37715 M	Ohms
	10 k 3.3 800 m	10 k Ohms 3.3 VDC 800 m VDC	10 k Ohms Bandwidth 3.3 VDC Gain 800 m VDC Transconductance	10 k

Error Amplifier Component Values

Synthesized Error Amplifier Transfer Function

Multiply Modulator by Error Amp Response

Predicted and Measured Loop Gain and Phase

Questions?

Thank You Michael Gray, Sr. Staff Engineer

For more information on any Venable Frequency Response Analysis System, call 512-949-3144, or email

info@venableinstruments.com